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Following the Adam-Gibbs procedure for describing the relaxation process of glass-forming liquids, a 
Vogel-Fulcher type equation has been obtained, determined by a new structural parameter called the 
isovolume fictive temperature, Tx. The resulting expression for the relaxation time has been applied 
satisfactorily to the experimental data of dielectric relaxation during physical ageing of poly(vinyl acetate). 
For testing the reliability of the proposed model, comparison with other phenomenological approaches 
has been made. 
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INTRODUCTION 

During the past 30 years, much experimental and 
theoretical work has been carried out to describe the 
relaxation process of glass-forming substances. Although 
there has been considerable progress in understanding 
the phenomenology of relaxation of viscous liquids, 
there is not yet a generally accepted microscopic 
interpretation of structural relaxation. It is well known 
that vitreous materials, including glassy polymers, are 
not in thermodynamic equilibrium below their thermal 
glass transition temperature, Tg. These substances are 
hindered from reaching equilibrium in the glassy state 
by kinetic phenomena, and a possible second-order 
thermodynamic transition can never be attained in the 
timescale of a normal human life. The time dependence 
of any property (density, enthalpy, structure factor, 
optical properties, dielectric behaviour, stress response) 
lacks a diverging singularity when a critical temperature 
is approached, and much scientific work has been 
aimed at obtaining a complete description of the 
time-temperature dependence of these properties. Above 
Tg, this description is very well determined by the 
Williams-Landel-Ferry (WLF) equation 1, or by a 
Vogel-Fulcher formula 2, obtained either by free volume 3 
theories or the Adam-Gibbs theory 4, based on a 
configurational entropy change at a true thermodynamic 
transition temperature, T 2. Below T~, the relaxation time 
or viscosity diverges as the critical temperature is 
approached. 

The introduction of a structural parameter, the 
'fictive temperature', Tf, is an attempt to describe 
phenomenologically the structural recovery in glass- 
forming systems 5. The time evolution of any property p 
may be given by the so-called Williams-Watt or 
Kohlrausch function 6, ¢p(t): 

[( ' ; ]  ~pp(t)=exp -- ~ (1) 

where r represents an average relaxation time and b is a 
positive constant less than unity. Narayanaswamy 7, who 
generalized the method developed by Tool 8, proposed 
an equation for r, which divides the temperature- and 
structure-dependent parts in terms of Tf: 

z = A e x p r x H  (1 - x)H] 
L R T  ~ d (2) 

where x is an adjustable parameter, H expresses the 
activation energy of the relaxation process and A is a 
pre-exponential factor. Hodge 9 has recently introduced 
the following expression for the relaxation time z, 
resulting from the Adam-Gibbs theory4: 

z = A exP[RT(1D T2/Tf) 1 (3) 

with 

D=#S* /Acp  (4) 

where/~ is the free energy barrier hindering cooperative 
rearrangement, S* is the configurational entropy of 
the smallest group able to rearrange, Acp is the 
configurational heat capacity and T 2 is the configurational 
ground state temperature. 

Matsuoka et al. 1° found a better fit to experimental 
data for poly(vinyl acetate) (PvAc) in the equilibrium and 
non-equilibrium state, by substituting the third therm in 
equation (2), which has the form of the equation proposed 
by Macedo and Litovitz 11: 

Ha Hw 
In z = C + q- (5) 

R T  R ( T f -  T2) 

where H, and H ,  express the activation energies of 
Arrhenius and Vogel-Fulcher formulae, respectively, and 
C is the logarithmic value of the pre-exponential factor. In 
the present study, a procedure analogous to that 
developed by Hodge has been followed. For the 
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calculation of So, however, another structural parameter, 
T, has been introduced, corresponding to a temperature 
in the equilibrium state where the total volume of the 
recovering system is equal to the volume of the disturbed 
one. In this way, part of the configurational entropy due 
to volume changes between the two states may be 
avoided. This approach will be applied in dielectric 
measurements resulting in the temperature dependence 
of dielectric relaxation time of PvAc ~2. Comparison 
between the proposed equation and that of Hodge, 
equation (3), in respect of the experimental values of 
relaxation time, will also be made. 

RELAXATION BEHAVIOUR IN THE NON- 
EQUILIBRIUM STATE 

Structural recovery in glass-forming systems, or any 
change in properties during arbitrary thermal cycles, can 
be accurately described by phenomenological theories s. 
The first important step in the development of such 
models was by Tool s , who proposed that structural 
relaxation should obey an equation analogous to that 
of the viscoelastic stress relaxation. Combining this 
assumption with the fact that fictive temperature, Tf, 
constitutes a single internal parameter used in practice 
for the description of the non-equilibrium state, a simple 
equation could be extracted, describing the relaxation of 
this internal parameter: 

fo I , dT , T~ = T-- q~(¢ - ~ ) ~5  de (6) 

where ¢ is the reduced time defined by: 

~ : % ' r  (7) 
Jo T 

and Zr is the value of relaxation time z at some reference 
temperature. By combining equations (1) and (6) with 
one of the equations (2), (3) or (5), the time evolution of 
fictive temperature is obtained. 

Hodge 9 assumed that the change of the configurational 
entropy, So, between the characteristic temperature T2 
and a temperature Tf of the non-equilibrium state may 
be expressed by: 

S¢= dT=ACp In -~ACp 1 -T2 (8) 
T 

where the Taylor expansion of the logarithmic function 
for T 2 < Tf has been taken into account. Ty is the upper 
limit of integration replacing temperature T, with ACp 
the configurational contribution to the isobaric heat 
capacity. 

However, a volume change between states A and B 
exists, resulting in an excess configurational entropy, AS, 
for state B (Fioure 1). This extra configurational entropy, 
AS, has been calculated and subtracted from equation 
(8) as follows. At temperature T, the total volume of the 
system, V T, is occupied by a number, N, of subsystems, 
and the probability of finding such a subsystem in volume 
VT is considered to be proportional to the volume: 
I4"1 = CVT, where C is a constant. The probability, WT, of 
finding N subsystems simultaneously in volume V T is the 
N-fold product of I4'1, that is: 

W T = W N = (CVT)  N (9) 

State B is characterized by the fictive temperature T~ 
and a volume VTf, with corresponding probability, WTf, 
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Figure 1 Schematic presentation of the temperature dependence of 
volume in the glassy and liquid states 

given by: 
WTf = (CVTf)  N (10)  

Hence the difference in configurational entropy between 
a state of volume VT and a state of volume VTf is: 

AS=K( ln  WT--ln WTf)=KN ln(VTf/VT) (11) 

Following the extrapolation of Figure 1, the ratio VTf/VT 
could be calculated by the thermal expansion equation: 

V T f / V  T = [1 - - ] - ag (Tf -  T)] (12) 

Substituting this form in equation (11) and taking the 
Taylor expansion of the logarithmic function, we obtain: 

AS = KNag(Tf-  T) (13) 

By subtracting this amount from equation (8), another 
expression for the configurational entropy will be 
extracted: 

S'c = Sc - K Na,( Tf - T) (14) 

The above calculations may be avoided if a new 
position in the equilibrium state is adopted, characterized 
by a temperature Tx, where the entropy contribution due 
to volume changes should be eliminated. Point C of 
Fioure 1 is selected to represent such a state in 
equilibrium, and the corresponding amount of excess 
entropy is: 

AS = K N a l ( T f -  T~) (15) 

Equating this term with the second part of equation (13), 
temperature T~ may be evaluated: 

T~= Tf-  a* (Tf - T) (16) 
at 

where a~ is the thermal expansion coefficient of the 
equilibrium state. Parameter T~, which will be called the 
isovolume fictive temperature, is obtained by extrapolating 
a line of the non-equilibrium state A parallel to the T-axis 
to intersect with the equilibrium curve. Tx could be used as 
the upper limit of integration in equation (8). The 
configurational entropy is then found to be: 

Sc=Jw 2 '  ('~ ACv dT= A C p ( 1 - - ~ )  (17) 

The resulting form of relaxation time will then be given by: 

z=A exp[ /D_ TX'- ] 
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For describing the time evolution of Tx in terms of 
equation (16), two choices could be adopted. The 
first involves accepting the glassy thermal expansion 
coefficient, a,(t), as a time-dependent physical property, 
which varies from an initial value, ag(0), up to an 
equilibrium value, a , ( ~ ) = a  t, following the equation 
proposed by ToolS: 

f o  , d T  , ag(t) = al -- [a I -- ag(0)]g0(~ -- ~ ) h-~ d~ (19) 

In this case the value of Tf appearing in equation (16) is 
constant during the relaxation process corresponding to 
the intersection point B of Figure  1. The second 
choice involves the time evolution of Tf according to 
equation (6), where the glassy thermal expansion 
coefficient is considered to be constant under the 
relaxation process. 

In the present study, the first procedure has been 
followed, meaning that structural relaxation interferes 
with the recovery of any other property affecting 
its evolution up to the equilibrium state. To apply 
equation (19), the determination of parameters a 1, a,(0), 
as well as the pre-exponential factor and activation energy 
for structural relaxation time is required. By evaluating 
the time evolution of T,, the relaxation time of 
any property (such as dielectric properties) could be 
obtained, given that the pre-exponential factor and 
activation energy for such a process have been defined 
independently 13. 

COMPARISON WITH E X P E R I M E N T  

The proposed model has been tested by fitting the 
experimental data for isothermal dielectric measurements 
on PvAc, carried out in a wide frequency range by 
Schlosser and Schonhals 12. These authors executed 
experiments in the temperature range from (Tg+50) 
to (T~- 15) K, using frequency and time domain measure- 
ments. Above Tg the complex permittivity 

~*(o9) = d(co) - id (o  0 

was measured in the frequency range 1-10 s Hz, using 
bridge methods described in refs 14 and 15. Near and 
below T v the relaxation behaviour was measured by the 
density of the depolarization current, j(t), for a field Eo 
which was switched off at time t = 0: 

j ( t ) /Eoe ~ = e'(t) t > 0 

where the relaxation function e'(t) is the time derivative 
of the time-dependent dielectric permittivity, e(t), and ea 
is the permittivity of the free space. 

In order to discuss the dielectric properties in the time 
domain, the measurements obtained in the frequency 
range were evaluated by fitting the imaginary part 
of the model function of Havriliak and Negami 16. 
This combination leads to the td(t) function versus 
time/7, shown schematically in Figure  2, where three 
characteristic times, tl, t2 and tin, are defined. These are 
the position parameters due to the maximum (tin) and 
half height of the function td(t) at short (tO and long (t2) 
times. 

Below Tg the relaxation process depends strongly on 

. . . . . . . .  
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log t z log tm log tl 
log t ~- - -  

Figure 2 Definition of the characteristic times tin, t 1 and t 2 

Table 1 Parameters for the Vogel-Fulcher equation, from ref. 12 

T 2 D/R 
log A (K) (K) 

t 1 - 12.5 269.3 563.1 
tm -- 11.45 270.8 554.8 
t 2 -- 10.75 271.5 549.0 

Table 2 Parameter values for the models tested 

T 2 D/R a a 
logA (K) (K) al a (ig0-aK -~) b 

Model calculation -11.33 270.8 554 6 3 0.5 
Hodge equation - 11.33 272 602 - - 0.5 

"Values taken from ref. 18 

the thermal prehistory. For  examining this effect, a well 
defined thermal treatment was executed, where three 
different annealing times, t e (elapsed from the beginning 
of cooling) of 300, 1600 and 8530 s, were studied. 

The plots of Figure  3 illustrate the variation of the 
characteristic times t 1, t2 and t m in respect of temperature, 
where experimental values are represented by solid lines. 
The parameter values of the Vogel-Fulcher equation 
fitted in the equilibrium state, according to ref. 12, are 
listed in Table 1, which also includes the results of 
the proposed description for relaxation time. The 
corresponding calculations, given in equation (18) in 
conj unction with equations (1), (16) and (19), are described 
in detail in appendix B of ref. 5. 

The second set of experimental data, with the mean 
relaxation time measured for three different annealing 
times of 300, 1600 and 8530 s, is illustrated by the plots 
of Figure  4. The graphical representation of theoretical 
values is also included in this figure, where an excellent 
fitting is observed. 

It is worth mentioning here that the isovolume fictive 
temperature model makes a unique determination of 
parameters ag, a 1 and activation energy, appearing 
in relaxation time equations. In this way, assuming 
reasonable values for these parameters included in 
Table 2, and solving numerically the related expressions, 
all features included in Figures  3 and 4 are adequately 
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Figure 3 Plots of the characteristic times versus 103/T for elapsed time t~ =300  s. Solid lines represent the experimental data of ref. 12. Model 
calculations: , ,  time tl; 0 ,  time tin; + ,  time t 2 
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Figure 4 Plots of the characteristic time, tin, versus 103/Tfor various elapsed times. Solid lines represent the experimental data  of ref. 12. Model 
calculations: , ,  tc = 300 s; 0 ,  tc = 1600 s; + ,  te = 8530 s 
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Figure 5 Plots of the characteristic times versus 103/T for elapsed time t e = 300 s. Solid lines represent the experimental data of ref. 12. Hodge 
approximation: , ,  time tl; O,  time t , ;  + ,  time t2 

reproduced for every thermal history and temperature 
range. 

However, the ability of this approach to obtain 
satisfactory agreement with experimental results could 
be better established if it is compared with other 

phenomenological models. Equation (3), introduced by 
Hodge in conjunction with equations (1), (6) and (7), was 
applied to the same experimental data, as presented in 
Figures 5 and 6. The inadequacy of this approximation 
in describing in detail the variation of relaxation times 
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Figure 6 Plots of the characteristic time tm versus 103/Tfor various elapsed times. Solid lines represent the experimental data of ref. 12. Hodge 
approximation: *, time tl; O, time tin; +,  time t 2 

below Tg is confirmed, especially in Fioure 6. Therefore, 
the parameter values required for optimal fitting should 
be changed from one set of experiments to the next. 

CONCLUSIONS 

Based on the Adam-Gibbs procedure for describing the 
relaxation process of glass-forming liquids, a Vogel-Fulcher 
type equation has been obtained, determined by a 
new structural parameter called the isovolume fictive 
temperature, Tx. This parameter expresses a temperature 
in the equilibrium state, where the total volume of the 
recovering system is equal to the volume of the disturbed 
system. In this way, part of the configurational entropy 
due to volume changes between the two states should be 
avoided. For describing the time evolution of T~, the time 
dependence of the thermal expansion coefficient of the 
glassy state has been taken into account, following an 
equation proposed by Tool s . 

The resulting expression for the relaxation time has 
been applied satisfactorily to the experimental data of 
dielectric relaxation during physical ageing of PvAc. For 
testing the reliability of the proposed model, comparison 
with Hodge's phenomenological approach has been 
made. It has been found that, according to our approach, 

a unique determination of parameters describing the 
structural relaxation is sufficient for interpreting all 
experimental results of dielectric relaxation. 
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